Pau d'Arco (Tabebuia impetiginosa) bark powder, Pau d'Arco Pau d'arco Powder

Tabebuia impetiginosa

This product is no longer sold by Raintree Nutrition, Inc. See the main product page for more information why. Try doing a google search or see the rainforest products page to find other companies selling rainforest herbal supplements or rainforest plants if you want to make this rainforest formula yourself.

Pau d'arco is used in Brazilian herbal medicine for many conditions including cancer, leukemia, ulcers, diabetes, candida, rheumatism, arthritis, prostatitis, dysentery, stomatitis, and boils.* Scientists around the world have documented the active properties of pau d'arco and its chemicals including the widely studied chemicals, beta-lapachone and lapachol which have been documented with anticancerous and antimicrobial actions.* For more information about pau d'arco (Tabebuia impetiginosa), please refer to the Database File for Pau d'arco in the Tropical Plant Database. To see pictures of pau d'arco, click here.

Check out the new Discussion Forums to see if anyone is talking about how they are using this natural rainforest remedy. More information on pau d'arco can also be found in the new Anti-Cancerous Guide and the Anti-Microbial Guide.

Traditional Uses: for Candida, yeast and other fungal infections (taken internally and used as a douche or topically); for leukemia and cancer; for colds, flu and other upper-respiratory bacterial and viral infections; for sexually transmitted diseases (syphilis, gonorrhea, etc.); for psoriasis and dermatitis

Suggested Use: The active chemicals in this plant are not very water soluble. It is best prepared as an alcohol tincture. Combine 1 part bark powder with 4 parts 90 proof alcohol (everclear or vodka). Allow to macerate for 2 weeks while agitating solution daily. Strain into a clean bottle and seal. It is traditionally taken in dosages of 2-3 ml (60 to 90 drops) 2-3 times daily. For more complete instructions on preparing herbal tinctures see the Methods for Preparing Herbal Remedies Page.

Contraindications: Not to be used during pregnancy or while breast-feeding.

Drug Interactions: None reported.





Third-Party Published Research*

All available third-party research on pau d'arco can be found at PubMed/Medline. A partial listing of the third-party published research on pau d'arco is shown below:

Antimicrobial Actions (fungi, yeast, bacteria, and virus):
Pau d'arco contains a plant chemical named lapachol which has documented antimalarial, antiseptic, antiviral, bactericidal, fungicidal, insecticidal, pesticidal, schistosomicidal, termiticidal, and viricidal actions. Another chemical in the bark, beta-lapachone, has been demonstrated in laboratory studies to have antibacterial, antifungal, and antiviral actions. Antimicrobial properties of many of pau d'arco's other active phytochemicals were demonstrated in several laboratory studies, in which they exhibited strong in vitro activity against bacteria, fungi, and yeast (including Candida, Aspergillus, Staphylococcus, Streptococcus, Helicobacter pylori, Brucella, tuberculosis, pneumonia, and dysentery). In addition to its isolated chemicals, a hot water extract of pau d'arco demonstrated antibacterial actions against Staphylococcus aureus, Helicobacter pylori, and Brucella. In other in vitro clinical research an extract of the bark was shown to have strong activity against 11 fungal and yeast strains. Pau d'arco and its chemicals also have demonstrated in vitro antiviral properties against various viruses, including Herpes I and II, influenza, polio virus, and vesicular stomatitis virus.
Hofling, J., et al. "Antimicrobial potential of some plant extracts against Candida species." Braz J Biol. 2010 Nov;70(4):1065-8.
Melo e Silva, F., et al. "Evaluation of the antifungal potential of Brazilian Cerrado medicinal plants." Mycoses. 2009 Nov;52(6):511-7.
Pereira, E. M., et al. "Tabebuia avellanedae naphthoquinones: activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis." Ann. Clin. Microbiol. Antimicrob. 2006 Mar; 5: 5.
Park, B. S., et al. "Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori." J. Ethnopharmacol. 2006 Apr; 105(1-2): 255-62.
Park, B. S., et al. “Selective growth-inhibiting effects of compounds identified in Tabebuia impetiginosa inner bark on human intestinal bacteria.” J. Agric. Food Chem. 2005 Feb; 23;53(4): 1152-7.
Park, B. S., et al. “Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori.” J. Ethnopharmacol. 2005 Dec;
Machado, T. B., et al. “In vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus.” Int. J. Antimicrob. Agents. 2003; 21(3): 279-84.
Portillo, A., et al. “Antifungal activity of Paraguayan plants used in traditional medicine.” J. Ethnopharmacol. 2001; 76(1): 93–8.
Nagata, K., et al. “Antimicrobial activity of novel furanonaphthoquinone analogs.” Antimicrobial Agents Chemother. 1998; 42(3): 700–2.
Binutu, O. A., et al. “Antimicrobial potentials of some plant species of the Bignoniaceae family.” Afr. J. Med. Sci. 1994; 23(3): 269–73.
Giuraud, P., et al. “Comparison of antibacterial and antifungal activities of lapachol and b-lapachone.” Planta Med. 1994; 60: 373–74.
Li, C. J., et al. “Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication.” Proc. Nat’l. Acad. Sci. USA 1993; 90(5): 1839–42.
Anesini, C., et al. “Screening of plants used in Argentine folk medicine for antimicrobial activity.” J. Ethnopharmacol. 1993; 39(2): 119–28.
Lagrota, M., et al. “Antiviral activity of lapachol.” Rev. Microbiol. 1983; 14: 21–6.
Gershon, H., et al. “Fungitoxicity of 1,4-naphthoquinonoes to Candida albicans and Trichophyton menta grophytes.” Can. J. Microbiol. 1975; 21: 1317–21.
Linhares, M. S., et al. “Estudo sobre of efeito de substancias antibioticas obitdas de Streptomyces e vegatais superiores sobre o herpesvirus hominis.” Revista Instituto Antibioticos, Recife 1975; 15: 25–32.

Anticancerous & Antileukemic Actions:
In the 1960s, extracts of pau d'arco demonstrated marked antitumorous effects in animals, which drew the interest of the National Cancer Institute (NCI). Researchers decided that the most potent single chemical for this activity was a naphthoquinone chemical named lapachol and they concentrated solely on this single chemical in their subsequent cancer research. In a 1968 study, lapachol demonstrated highly significant activity against cancerous tumors in rats.
By 1970, NCI-backed research already was testing lapachol in human cancer patients. The institute reported, however, that their first Phase I study failed to produce a therapeutic effect without side effects—and they discontinued further cancer research shortly thereafter. These side effects were nausea and vomiting and anti-vitamin K activity. Interestingly, other chemicals in the whole plant extract (which, initially, showed positive antitumor effects at very low toxicity) demonstrated positive effects on vitamin K and, conceivably, compensated for lapachol's negative effect. Once again, instead of pursuing research on a complex combination of at least 20 active chemicals in a whole plant extract (several of which had anti-tumor effects and other positive biological activities), research focused on a single, patentable chemical—and it didn't work as well. Despite NCI's abandonment of the research, another group developed a lapachol analog (which was patentable) in 1975. One study reported that this lapachol analog increased the life span of mice inoculated with leukemic cells by over 80%. In a small, uncontrolled, 1980 study of nine human patients with various cancers (liver, kidney, breast, prostate, and cervix), pure lapachol was reported to shrink tumors and reduce pain caused by them—and three of the patients realized complete remissions.
Another chemical in pau d'arco, beta-lapachone, has been studied closely of late and a number of recent patents have been filed on it. It has demonstrated in laboratory studies to have activities similar to lapachol (antimicrobial, antifungal, antiviral, antitumorous, antileukemic, and anti-inflammatory), with few side effects. Research published from 2003 to 2005 provides important new insights into the possible molecular mechanisms of the anti-cancer activity of beta-lapachone specifically against prostate, colon, pancreatic, and lung cancers. In a 2002 U.S. patent, beta-lapachone was cited to have significant anticancerous activity against human cancer cell lines including: promyelocytic leukemia, prostate, malignant glioma, colon, hepatoma, breast, ovarian, pancreatic, multiple myeloma cell lines and drug-resistant cell lines. In yet another U.S. patent, beta-lapachone was cited with the in vivo ability to inhibit the growth of prostate tumors.

Costa, W., et al. "Lapachol as an epithelial tumor inhibitor agent in Drosophila melanogaster heterozygote for tumor suppressor gene wts." Genet Mol Res. 2011 Dec 22;10(4):3236-45.
Sichaem, J., et al. "Tabebuialdehydes A-C, cyclopentene dialdehyde derivatives from the roots of Tabebuia rosea." Fitoterapia. 2012 Dec;83(8):1456-9.
Garkavtsev, I., et al. "Dehydro-alpha-lapachone, a plant product with antivascular activity." Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11596-601.
Higa, R., et al. "Study of the antineoplastic action of Tabebuia avellanedae in carcinogenesis induced by azoxymethane in mice." Acta Cir Bras. 2011 Apr;26(2):125-8.
Moon, D., et al. "Beta-lapachone (LAPA) decreases cell viability and telomerase activity in leukemia cells: suppression of telomerase activity by LAPA." J Med Food. 2010 Jun;13(3):481-8.
Mukherjee, B., et al. "Growth inhibition of estrogen receptor positive human breast cancer cells by Taheebo from the inner bark of Tabebuia avellandae tree." Int J Mol Med. 2009 Aug;24(2):253-60.
Yamashita, M., et al. "Synthesis and evaluation of bioactive naphthoquinones from the Brazilian medicinal plant, Tabebuia avellanedae." Bioorg Med Chem. 2009 Sep 1;17(17):6286-91.
de Sousa, N., et al. "Modulatory effects of Tabebuia impetiginosa (Lamiales, Bignoniaceae) on doxorubicin-induced somatic mutation and recombination in Drosophila melanogaster" Genet Mol Biol. 2009 Apr-Jun; 32(2): 382–388.
Queiroz, M., et al. "Comparative studies of the effects of Tabebuia avellanedae bark extract and beta-lapachone on the hematopoietic response of tumour-bearing mice." J Ethnopharmacol. 2008 May 8;117(2):228-35.
Kim, S., et al. "Induction of Egr-1 is associated with anti-metastatic and anti-invasive ability of beta-lapachone in human hepatocarcinoma cells." Biosci Biotechnol Biochem. 2007 Sep;71(9):2169-76.
Larsson, D. E., et al. "Identification and evaluation of potential anti-cancer drugs on human neuroendocrine tumor cell lines." Anticancer Res. 2006 Nov-Dec; 26(6B): 4125-9.
Bey, E. A., et al. "Mornings with Art, lessons learned: feedback regulation, restriction threshold biology, and redundancy govern molecular stress responses." J. Cell Physiol. 2006 Dec; 209(3): 604-10.
Kung, H. N., et al. "Involvement of NO/cGMP signaling in the apoptotic and anti-angiogenic effects of beta-lapachone on endothelial cells in vitro." J. Cell Physiol. 2006 Dec 27;
Bentle, M. S., et al. "Calcium-dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair." J. Biol. Chem. 2006 Nov; 281(44): 33684-96.
Sun, X., et al. "Selective induction of necrotic cell death in cancer cells by beta-lapachone through activation of DNA damage response pathway." Cell Cycle. 2006 Sep; 5(17): 2029-35.
Woo, H. J., et al. "Beta-lapachone, a quinone isolated from Tabebuia avellanedae, induces apoptosis in HepG2 hepatoma cell line through induction of Bax and activation of caspase." J. Med. Food. 2006 Summer; 9(2):161-8.
Suzuki, M., et al. "Synergistic effects of radiation and beta-lapachone in DU-145 human prostate cancer cells in vitro." Radiat. Res. 2006; 165(5): 525-31.
Lee, J. I., et al. "Beta-lapachone induces growth inhibition and apoptosis in bladder cancer cells by modulation of Bcl-2 family and activation of caspases." Exp. Oncol. 2006 Mar; 28(1): 30-5.
Lee, J. H., et al. “Down-regulation of cyclooxygenase-2 and telomerase activity by beta-lapachone in human prostate carcinoma cells.” Pharmacol. Res. 2005; 51(6): 553-60.
Reinicke, K. E., et al. “Development of beta-lapachone prodrugs for therapy against human cancer cells with elevated NAD(P)H:quinone oxidoreductase 1 levels.” Clin. Cancer Res. 2005 Apr; 11(8): 3055-64.
Woo, H. J., et al. “Growth inhibition of A549 human lung carcinoma cells by beta-lapachone through induction of apoptosis and inhibition of telomerase activity.” Int. J. Oncol. 2005; 26(4): 1017-23.
Park, H. J., et al. “Heat-induced up-regulation of NAD(P)H:quinone oxidoreductase potentiates anticancer effects of beta-lapachone.” Clin. Cancer Res. 2005 Dec; 11(24 Pt 1): 8866-71.
Balassiano, I. T., et al. “Demonstration of the lapachol as a potential drug for reducing cancer metastasis. Oncol. Rep. 2005; 13(2): 329-33.
Ough, M., et al. "Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1." Cancer Biol. Ther. 2005 Jan; 4(1): 95-102.
Park, H. J., et al. "Susceptibility of cancer cells to beta-lapachone is enhanced by ionizing radiation." Int. J. Radiat. Oncol. Biol. Phys. 2005 Jan; 61(1): 212-9.
Kumi-Diaka, J., et al. "Potential mechanism of phytochemical-induced apoptosis in human prostate adenocarcinoma cells: Therapeutic synergy in genistein and beta-lapachone combination treatment." Cancer Cell Int. 2004 Aug; 4(1): 5.
Choi, B. T., et al. “beta-Lapachone-induced apoptosis is associated with activation of caspase-3 and inactivation of NF-kappaB in human colon cancer HCT-116 cells.” Anticancer Drugs. 2003 Nov; 14(10): 845-50.
Renou, S. G., et al. “Monoarylhydrazones of alpha-lapachone: synthesis, chemical properties and antineoplastic activity.” Pharmazie. 2003 Oct; 58(10): 690-5.
Choi, Y. H., et al. “Suppression of human prostate cancer cell growth by beta-Lapachone via down-regulation of PRB phosphorylation and induction of Cdk Inhibitor p21(WAF1/CIP1).” J. Biochem. Mol. Biol. 2003 Mar; 36(2): 223-9.
Colman de Saizarbitoria, T., et al. “Bioactive furonaphtoquinones from Tabebuia barbata (Bignoniaceae).” Acta Cient. Venez. 1997; 48(1): 42-6.
Ueda, S., et al. “Production of anti-tumour-promoting furanonaphthoquinones in Tabebuia avellanedae cell cultures.” Phytochemistry. 1994 May; 36(2): 323-5.
Schuerch, A. R., et al. “B-Lapachone, an inhibitor of oncornavirus reverse transcriptase and eukarotic DBA Polymerase-A. Inhibitory effect, thiol dependency and specificity.” Eur. J. Biochem. 1978; 84: 197–205.
Linardi, M. D. C., et al. “A lapachol derivative active against mouse lymphocyte leukemia P-388.” J. Med. Chem. 1975; 18(11): 1159–62.
Block, J. B., et al. “Early clinical studies with lapachol (NSC-11905).” Cancer Chemother. Rep. 1974; 4: 27–8.
Santana, C. F., et al. “Preliminary observation with the use of lapachol in human patients bearing malignant neoplasms.” Revista do Instituto de Antibioticos 1971; 20: 61–8.
Rao, K. V., et al. “Recognition and evaluation of lapachol as an antitumor agent.” Canc. Res. 1968; 28: 1952–54.

Immunomodulatory Actions:
Xu, J., et al. "Beta-Lapachone ameliorization of experimental autoimmune encephalomyelitis." J Neuroimmunol. 2012 Sep 22. doi:pii: S0165-5728(12)00277-9.
Bohler, T., et al. "Tabebuia avellanedae extracts inhibit IL-2-independent T-lymphocyte activation and proliferation." Transpl Immunol. 2008 Feb;18(4):319-23.

Anti-inflammatory, Immunomodulatory, & Pain-Relieving Actions:
Lee, M., et al. "Analgesic and anti-inflammatory effects in animal models of an ethanolic extract of Taheebo, the inner bark of Tabebuia avellanedae." Mol Med Report. 2012 Oct;6(4):791-6
Suo, M., et al. "Anti-inflammatory constituents from Tabebuia avellanedae." Fitoterapia. 2012 Dec;83(8):1484-8.
Byeon, S., et al. "In vitro and in vivo anti-inflammatory effects of taheebo, a water extract from the inner bark of Tabebuia avellanedae." J Ethnopharmacol. 2008 Sep 2;119(1):145-52.
Awale, S., et al. ”Nitric oxide (NO) production inhibitory constituents of Tabebuia avellanedae from Brazil.” Chem. Pharm. Bull. 2005; 53(6): 710-3.
Lee, J. H., et al. "Down-regulation of cyclooxygenase-2 and telomerase activity by beta-lapachone in human prostate carcinoma cells." Pharmacol. Res. 2005; 51(6): 553-60.
de Miranda, F. G., et al. “Antinociceptive and antiedematogenic properties and acute toxicity of Tabebuia avellanedae Lor. ex Griseb. inner bark aqueous extract.” BMC. Pharmacol. 2001; 1(1): 6.
Oga, S., et al. “Toxicidade e atividade anti-inflamatoria de Tabebuia avellanedae Lorentz (‘Ipe Roxo’).” Rev. Fac. Farm. Bioquim. 1969; 7: 4.

Antipsoriatic Actions:
Muller, K., et al. “Potential antipsoriatic agents: lapacho compounds as potent inhibitors of HaCaT cell growth.” J. Nat. Prod. 1999; 62(8): 1134–36.

Antidepressant Actions:
Freitas, A., et al. "Antidepressant-like action of the bark ethanolic extract from Tabebuia avellanedae in the olfactory bulbectomized mice." J Ethnopharmacol. 2012 Dec 10.
Freitas, A., et al. "Antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice: evidence for the involvement of the monoaminergic system." Prog Neuropsychopharmacol Biol Psychiatry. 2010 Mar 17;34(2):335-43.

Anti-Ulcer & Gastroprotective Actions:
Theoduloz, C., et al. "Potential gastroprotective effect of novel cyperenoic acid/quinone derivatives in human cell cultures." Planta Med. 2012 Nov;78(17):1807-12.
Pereira, I., et al. "Antiulcer Effect of Bark Extract of Tabebuia avellanedae: Activation of Cell Proliferation in Gastric Mucosa During the Healing Process." Phytother Res. 2012 Sep 12. doi: 10.1002/ptr.4835. [Epub ahead of print]
Twardowschy, A., et al. "Antiulcerogenic activity of bark extract of Tabebuia avellanedae, Lorentz ex Griseb." J Ethnopharmacol. 2008 Aug 13;118(3):455-9.

Cholesterol-Lowering Actions:
Kiage-Mokua, B., et al. "Lapacho Tea (Tabebuia impetiginosa) Extract Inhibits Pancreatic Lipase and Delays Postprandial Triglyceride Increase in Rats." Phytother Res. 2012 Dec;26(12):1878-83.

Wound-Healing Actions:
Coelho, J., et al. "[Effects of silver sulfadiazine, ipê roxo (tabebuia avellanedae) extract and barbatimão (stryphnodendron adstringens) extract on cutaneous wound healing in rats]." Rev Col Bras Cir. 2010 Feb;37(1):45-51.
Kung, H., et al. "In vitro and in vivo wound healing-promoting activities of beta-lapachone." Am J Physiol Cell Physiol. 2008 Oct;295(4):C931-43.

Antioxidant Actions:
Park, B. S., et al. “Antioxidant activity and characterization of volatile constituents of Taheebo (Tabebuia impetiginosa Martius ex DC).” J. Agric. Food Chem. 2003; 51(1): 295-300.

Antivenin Actions:
Nunez, V., et al. “Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Colombia.” Braz. J. Med. Biol. Res. 2004; 37(7): 969-77.
Otero, R., et al. “Snakebites and ethnobotany in the northwest region of Colombia. Part III: neutralization of the haemorrhagic effect of Bothrops atrox venom.” J. Ethnopharmacol. 2000 Nov; 73(1-2): 233-41.
Otero, R., et al. “Snakebites and ethnobotany in the northwest region of Colombia: Part II: neutralization of lethal and enzymatic effects of Bothrops atrox venom.” J. Ethnopharmacol. 2000 Aug; 71(3): 505-11.

Anti-Parasitic & Anti-Malarial Actions:
González-Coloma, A., et al. "Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants." Parasitol Res. 2012 Apr;110(4):1381-92.
Silva, T., et al. "Molluscicidal activities of six species of Bignoniaceae from north-eastern Brazil, as measured against Biomphalaria glabrata under laboratory conditions." Ann Trop Med Parasitol. 2007 Jun;101(4):359-65.
Ferreira, V. F., et al. "Trypanocidal agents with low cytotoxicity to mammalian cell line: a comparison of the theoretical and biological features of lapachone derivatives." Bioorg. Med. Chem. 2006 Aug; 14(16): 5459-66.
Silva, R. S., et al. "Synthesis of naphthofuranquinones with activity against Trypanosoma cruzi." Eur. J. Med. Chem. 2006 Apr; 41(4): 526-30.
Menna-Barreto, R. F., et al. "Effect of a beta-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles." J. Antimicrob. Chemother. 2005 Dec; 56(6): 1034-41.
Perez-Sacau, E., et al. "Antiplasmodial activity of naphthoquinones related to lapachol and beta-lapachone." Chem. Biodivers. 2005; 2(2): 264-74.
Lima, N. M., et al. "Antileishmanial activity of lapachol analogues." Mem. Inst. Oswaldo Cruz. 2004 Nov; 99(7): 757-61.
de Andrade-Neto, V. F., et al. "Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo." Bioorg. Med. Chem. Lett. 2004 Mar; 14(5): 1145-9.
Pinto, C. N., et al. “Chemical reactivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy.” Arzneimittelforschung. 2000; 50(12): 1120-8.
Austin, F. R. “Schistosoma mansoni chemoprophylaxis with dietary lapachol.” Am. J. Trop. Med. Hyg. 1979; 23: 412–19.
Gilbert, B., et al. “Schistosomiasis. Protection against infection by terpenoids.” An. Acad. Brasil. Cienc. 1970; 2 (Suppl): 397–400.

Toxicity Studies:
Lemos, O., et al. "Genotoxic effects of Tabebuia impetiginosa (Mart. Ex DC.) Standl. (Lamiales, Bignoniaceae) extract in Wistar rats." Genet Mol Biol. 2012 Apr-Jun; 35(2): 498–502.
de Sousa, N., et al. "Modulatory effects of Tabebuia impetiginosa (Lamiales, Bignoniaceae) on doxorubicin-induced somatic mutation and recombination in Drosophila melanogaster" Genet Mol Biol. 2009 Apr-Jun; 32(2): 382–388.



* The statements contained herein have not been evaluated
by the Food and Drug Administration. This product is
not intended to treat, cure, mitigate or prevent any disease.
Please refer to our Conditions of Use for this web site and product.





© Copyrighted 1996 to present by Leslie Taylor, Milam County, TX 77857.
All rights reserved. Please read the Conditions of Use, and Copyright Statement
for this web page and web site.
Last updated 12-30-2012